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Abstract

Two independent state equations are established for transversely isotropic magneto-electro-elastic media
by introducing proper stress and displacement functions. The free vibration problem of simply supported
rectangular plates with general inhomogeneous (functionally graded) material properties along the
thickness direction is then considered. An approximate laminate model is employed to transform the state
equations with variable coefficients to the ones with constant coefficients. Two different classes of
vibrations are found. In particular, the frequency of the first class is only related to the elastic property of
the plate, while that of the second class is affected by the couplings among the elastic, electric and magnetic
fields. Numerical results are presented and some important issues are discussed.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Many researchers have paid their attention to the mechanics problems associated with
magneto-electro-elastic materials recently [1-5]. As regards the structural analysis, Pan [6] derived
an exact three-dimensional solution of a simply supported multilayered orthotropic magneto-
electro-elastic plate using a propagator matrix method. Such a solution can play an important role
in clarifying two-dimensional simplified plate theories or numerical methods. Wang et al. [7]
extended the previous works on elastic and piezoelectric plates [8—10] to study the bending of
multi-layered orthotropic magneto-electro-elastic rectangular plates by adopting the state space
formulations. Chen and Lee [11] presented novel state space formulations for the static problem
of transversely isotropic thermo-magneto-electro-elastic materials by virtue of a separation
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technique. The free vibration investigation was recently performed by Pan and Heyliger [12], who
found that some natural frequencies of a multi-field (piezoelectric/magnetostrictive) plate were
identical to the ones of the corresponding elastic plate. They argued that certain vibration modes
of the plate were insensitive to the coupling effects among elastic, electric, and magnetic fields. The
plate considered in their numerical example is in fact transversely isotropic, for which we will
show theoretically in this paper that there actually exists a class of vibration, of which the
frequencies depend on the elastic property only.

To this end, two independent state equations are derived from the three-dimensional dynamic
equations for transversely isotropic magneto-electro-elastic materials by virtue of two separation
formulations for displacements and stresses. It is noted here that this separation technique has
been employed by Ding and Chen [13-15] to study the static and dynamic behaviors of
piezoelastic plates and shells. Chen and Lee [11] also adopted this technique to derive two separate
static state equations for transversely isotropic magento-electro-elastic materials involving
thermal effect. It is seen that the state space formulations for dynamic problem are also valid
when the material is inhomogeneous along the axis of symmetry. Thus the free vibration of simply
supported plate that is inhomogeneous along the thickness direction is considered. To obtain the
solution in an analytical form, an approximate laminate model is employed. Two independent
classes of vibrations are found with the frequency of the first class being related to the elastic
property of the plate only, thus validating the observation reported by Pan and Heyliger [12]. As
pointed out by Li [3], the micromechanics simulation showed that the magnetoelectric coupling
exists in the BaTiO3—CoFe, 0y fiber reinforced or laminated plate. The effect of this coupling on
the natural frequency that was not considered by Pan and Heyliger [12] is studied numerically by
considering a magneto-electro-elastic plate having a functionally graded material property along
the thickness direction.

2. Basic equations

Consider a transversely isotropic magneto-electro-elastic medium in Cartesian co-ordinate
system (x, y, z). If z-axis is normal to the plane of isotropy, the constitutive relations are [3,4]
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where, o; and 7; are the normal and shear stresses, respectively; u, v and w are components of the
mechanical displacement in x-, y- and z-directions, respectively; ¢, ¥, D;, and B; are the electric
potential, magnetic potential, electric displacement components, and magnetic induction
components, respectively; c;, &5, e, q;, dj, and w; are the elastic, dielectric, piezoelectric,
piezomagnetic, magnetoelectric, and magnetic constants, respectively. For transversely isotropic

material, the relation c¢;; = ¢ + 2¢66 holds. In this paper, all these material constants are
assumed to be functions of the co-ordinate variable z. The equations of motion are [12]
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where p is the density of the material, also a function of z.
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Following a routine derivation [7,16], we can derive the conventional state equation involving
inertia effect as well as the material inhomogeneity along z-direction from Egs. (1)—(6) as follows:
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3. Alternative state space formulations

To construct new state space formulations, the following substitutions are employed [11,13-15]:
oY oG o oY oG 811 6‘[2 _ 6‘[1 6‘[2
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dy  ox’ U7 ox oy’ f dy 0x 07T ox Oy (10)

where ¥ and G are two displacement functions, and 7; and 1, are two stress functions. By virtue
of Eq. (10), similar to Ref. [11], we can arrive at the following state equations:
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It can be seen that the ten state variables ¥, 1y, G, 0., D., B., 15, w, ¢ and y are sorted into two
groups: One group is related to ¥ and 7; only, and the other to the remaining eight state variables.
It will be demonstrated later in this paper that the separation of state equations can help us to
understand some particular characteristics occupied by practical problems that cannot be revealed
by the tenth order state equation, i.e., Eq. (7).

4. Vibration analysis of non-homogeneous rectangular plates

Consider a simply supported, transversely isotropic, rectangular plate of width a, length » and
thickness H (Fig. 1a), with its isotropic plane parallel to the middle plane. The plate is assumed to
be inhomogeneous along the thickness direction.

The simply supported boundary conditions for a magneto-electro-elastic plate can be expressed
as follows:

x=0aw=0c,=v=¢=y=0 and y=0b:w=0,=u=¢ =y =0. (15)
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Fig. 1. A non-homogeneous rectangular plate and the approximate laminate model.
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where { =z/H, £ = x/a and n = y/b are the dimensionless co-ordinates, K = —(s% + s%), S| =
(H /a)ymn, s, = (H /b)nr, w is the circular frequency, and cJ,, €3; and &), etc. represent the material
constants at z = 0 (the top surface).

Substitution of Egs. (16) and (17) into Eqs. (11)—(13), gives for an arbitrary couple of (m, n)
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where Q@ = wH /p°/c, is the dimensionless frequency and p° is the density at z = 0. Since the

material properties vary with the variable z, it is usually difficult to obtain the solutions to the two
state equations in Eq. (18) directly except for some particular cases. For the general case that the
material constants are arbitrary functions of z (can be different for different material constants),
an efficient analysis based on the approximate laminate model, as shown in Fig. 1b, can be
adopted [17,18,11]. In this method, the plate is divided into p equal thin layers (Fig. 1b), each with
a small thickness. In every layer, the material constants can be assumed constant. Consequently,

the coefficient matrices M; and M, are constant and will be denoted as M‘lj and M2’ in the jth
layer, which have the values at the middle plane of that layer. It is clear that with the number of
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layers increasing, the laminate model gradually approaches the actual plate and the solution
becomes more and more close to the exact one. By virtue of the matrix theory, we can obtain the
solutions of the two state equations within each layer, from which the following relations can be
finally established:

Vi) =TiVi(0),  Va(1) = Ty V2(0), (20)

where T = H}:p exp(Mlj /p) and T, = H}:p exp(Mj /p) are matrices of the second and eighth
order, respectively. The derivation of Eq. (20) is very straightforward and the readers are referred
to Refs. [11,16] for details.

For the free vibration problem, apart from the vanishing mechanical forces and magnetic
induction (6. = 7; = T, = B. = 0) at the top and bottom surfaces, we consider two different types
of electric conditions, i.e., the closed-circuit (¢ = 0) and open-circuit (D. = 0) conditions. For the
closed-circuit condition, we can obtain from Eq. (20) the following two frequency equations on
the requirement of existing non-trivial solutions:

Tia1 = 0, 1)
Tnr Toz Toe Toog
T T T T
i Ty Toas Toas| 0. 22)
Trs1 Tos3 Tose Thsg
Ton Tz Trye Togs

where Tj; are elements of the matrix Tr. Now we have obtained two independent frequency
equations: Eq. (21), only involving the elastic property of the plate, corresponds to a purely
in-plane vibration, while Eq. (22), depending on all material properties, corresponds to a general
flexural vibration. For the open-circuit condition, we find that the frequency equation for the
in-plane vibration is the same as Eq. (21), while that for the general flexural vibration becomes

T Tre Trn7 Tig
T T T T
wm Toe T Tos| _ (23)
Toar Toae Toa7 Tosg
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The fact that there exist two independent classes of vibrations mentioned above strictly affirms the
observation obtained by Pan and Heyliger [12].

As pointed out by Pan and Heyliger [12], other possible conditions such as mechanically fixed
and/or zero magnetic potential at the two surfaces also can be treated. These are omitted in this
paper for simplicity.

For the calculation of vibration modes, the following equation should be employed to compute
the state variables at an arbitrary (:

. 1 .
Vi(©) = expIM{(C = 5] [T expM/pIVi(0) (k= 1,2;5<E< ),
i=j—1

24)

where {; = (j — 1)/p. The remainder variables are then determined from Eq. (14).
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5. Numerical results

In all numerical examples to be considered, we take m =n =1, which represents the
fundamental vibrational mode that is of practical importance [19]. The example of sandwich
piezoelectric and magnetostrictive plate (open-circuit at the top and bottom surfaces) of H/a =
H/b =1 studied by Pan and Heyliger [12] is considered here for comparison. The material
constants of BaTiO3 and CoFe;Oy4 can be found in Tables 4 and 5 in Pan and Heyliger [12] (the
densities of the two materials are assumed identical). Table 1 gives the lowest five frequency
parameters ®* = 0a\/pyax/ Cimax (Cmax being the maximum of the ¢;; in the whole sandwich plate
and p,.. = 1), which was defined by Pan and Heyliger [12], for the first and second classes of
vibrations. It can be seen that the frequency of Mode 1 given by Pan and Heyliger [12] is actually
the lowest frequency of the first class of vibration. This can also be verified by Fig. 1 in Pan and
Heyliger [12], where the transverse displacement, electric potential and magnetic potential all
vanish, for Mode 1 of the B only plate. Note that our results of the lowest frequency of the first
class of vibration are identical with Pan and Heyliger’s calculations for B only and F only plates
and the difference of results for B/F/B/ and F/B/F plates is also negligible. However, the
discrepancy, generally less than 3%, can be observed for other higher modes. To check our results,
we also have performed the calculations directly based on Eq. (7), i.e., using the conventional state
space formulations, whose accuracy, correctness and effectiveness have been verified by various
researchers for elastic, piezoelectric, and magneto-electro-elastic plates and shells [7-10,16]. We
actually have obtained exactly the same results as that presented in Table 1. It is pointed out here
that by setting ¢; = 0 and/or ¢; = 0 in relevant formulations, the present method can be directly

Table 1

Lowest 5 frequency parameters w* = way/p ./ Cmax Of the sandwich plate studied in Pan and Heyliger [12]*

Order B only F only B/F/B F/B/F

Ist 2nd Ist 2nd Ist 2nd Ist 2nd

1 2.30033 2.10902 1.97472 1.54009 1.82648 1.54742 1.89865 1.60543
(2.08137) (1.53366) (1.60524)

2 2.80145 2.81507 2.33726 2.25432 2.15561 2.24483 2.31557 2.24751
(2.74968) (2.23332) (2.24737)

3 3.93927 3.96097 3.18631 3.21210 3.07652 3.08342 3.11555 3.22160
(3.83200) (3.02221) (3.22148)

4 5.31985 4.38852 4.23897 3.78466 4.11470 3.44376 4.17674 3.73693
(4.30270) (3.34520) (3.73691)

5 6.79683 5.50595 5.37695 4.52726 5.24651 4.39150 5.30704 4.39757
(5.40683) (4.25627) (4.39755)

#QOpen-circuit electric condition was adopted in Ref. [12]; the results for the closed-circuit condition are also given
here in parentheses for comparison.
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used to calculate the natural frequencies of piezoelastic, magnetoelastic as well as purely elastic
plates. In fact, the results for a piezoelectric PZT-4 plate and the corresponding elastic plate (see
Table 3 in Ref. [12]) have been successfully reproduced.

From Table 1, we also find that the lowest natural frequency of the plate usually belongs to the
second class of vibration. This property also has been observed for the piezoelectric plate [13].
Table 1 also lists the natural frequencies for the closed-circuit electric condition for the purpose of
comparison. Note that since the F only plate has e¢; = 0, the surface electric condition has no
effect on its frequencies. It is seen that the frequencies for the closed-circuit condition are usually
lower than the corresponding ones for the open-circuit condition. This phenomenon has been well
reported in the dynamic analyses of piezoelectric plates and shells [15].

Now we consider a simply supported non-homogeneous magneto-electro-elastic rectangular
plate with H/a = 1/4 and H/b = 1/6. The following functionally graded model [20,21] regarding
the material inhomogeneity is employed:

H—z\" H—z\"
_ B c
mij—mi/< >+mij [1—( )], (25)

where « is the gradient index, and mﬁ and m,]C are the material constants of BaTiO3; and CoFe,Oy,
respectively. It is noted that when x = 0, the plate is a homogeneous BaTiO; plate and when x
tends to infinite, it becomes a homogeneous CoFe,O4 plate. At the first stage, we take the material
constants as exactly the same as those in Pan and Heyliger [12], where the magnetoelectric
coupling was not considered, i.e., d;; = dz3 = 0. It is also mentioned that we just consider a special
kind of material inhomogeneity from the theoretical point of view, regardless of its background in
engineering. However, one can expect that magneto-electro-elastic materials with functionally
graded property will appear soon just as other advanced materials [22].

Table 2 compares the calculated lowest five dimensionless frequencies Q = wH/p°/c, of the
FGM plate for a 29- and a 30-layer model, respectively. The gradient index is taken to be k = 2. It
is seen that the difference between the results of two models is completely negligible. Thus in the
following, we shall take p = 30 and the results are believed to be of high accuracy. From Table 2,

Table 2
Lowest 5 dimensionless frequencies Q of a functionally graded magneto-electro-elastic plate for two laminate models
(x =2.0)

Electric condition p Class Frequency order
1 2 3 4 5
Open 29 Ist 1.04277 3.36482 6.47999 9.64833 12.8308
2nd 0.431788 1.83818 3.79365 6.35670 8.02087
30 Ist 1.04277 3.36482 6.47999 9.64833 12.8308
2nd 0.431785 1.83818 3.79364 6.35670 8.02088
Closed 29 2nd 0.430725 1.83224 3.71108 6.27877 7.95984

30 2nd 0.430723 1.83224 3.71108 6.27877 7.95985
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Fig. 2. Variations of the lowest non-dimensional frequency Q versus the gradient index «: (a) the first class and (b) the
second class.

it is also seen that the electric condition at the plate surfaces has a little effect on the natural
frequencies.

The variations of the lowest dimensionless frequency 2 with the gradient index k are shown in
Fig. 2. Since the first class of vibration depends on the elastic property of the plate only, the
electric condition on the plate surfaces does not affect the associated frequencies, and hence only
one curve is given in Fig. 2(a). As we can see, 2 increases with k. In fact, it changes gradually from
the one of the homogeneous BaTiO; plate to that of the homogeneous CoFe,O4 plate. From
Fig. 2(b), we find that the difference between frequencies for the two electric conditions also varies
with x. In particular, for the homogeneous BaTiOj; plate, the difference is most significant, while it
decreases with increasing k.

Li [3] predicted from a micromechanics analysis that for a two-phase BaTiO;—CoFe,Oy4
composite, the magnetoelectric coefficients are not zero (dj; #0, d33 #0), although neither phase
shows this coupling. The magnitude of the magnetoelectric coupling depends on the factors such
as the material combination method and phase volume fraction. Our recent investigation showed
that, when the plate is subjected to static magnetic load, the effect of magnetoelectric coupling
should be taken into consideration [11]. Now we try to study the effect of this coupling on the
natural frequencies of the inhomogeneous magneto-clectro-elastic plate. Note that the material
constants of the functionally graded plate represented by Eq. (25) vary from the ones of BaTiOj; at
the top surface to that of CoFe,Q, at the bottom surface continuously. Thus the two coefficients
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Table 3
Effect of magnetoelectric coupling on natural frequencies Q of the second class of vibration of the functionally graded
plate (x = 0.5)

Electric condition Coupling Frequency order
1 2 3 4 5
Open No 0.426666 1.77514 3.87899 6.11117 7.54853
Yes 0.426669 1.77516 3.87900 6.11112 7.54816
Closed No 0.424197 1.72746 3.65445 6.07629 7.35026
Yes 0.424201 1.72746 3.65445 6.07626 7.35012

dy and ds3 are assumed to vary with the thickness direction in a way presented in Fig. 5(a) of Li
[3], which is fitted here as [11]

dii(0) = 3.50 — 3502 + 31.5(,,
—225002 + 5025¢, for 0<{<0.9,
d33(0) = {

—300 OOOC? + 543 000¢, — 243000 for 0.9<(<1.0 (26)
with the unit 10~!> Ns/(VC), where {, = 1 — {. In addition, k = 0.5 is selected for performing the
numerical calculation. Table 3 compares the lowest five non-dimensional frequencies between two
different cases (with and without the magnetoelectric coupling). It is shown that for both types of
electric conditions, the magnetoelectric coupling almost has no influence on the natural
frequencies of the plate. In fact, we have calculated the lowest 40 natural frequencies, and the
same conclusion is obtained. Thus, for most applications, the magnetoelectric coupling could be
neglected in the frequency analysis of BaTiO3—CoFe,O4 composite structures.

The final example considers the free vibration of the above functionally graded plate with a = b
for different values of H /a. The open-circuit electric condition is assumed at the top and bottom
surfaces. The results are given in Table 4 for both classes of vibration. Note that the effect of
magnetoelectric coupling is found very small and indeed can be neglected, just as shown in the last
example. Thus only results with magnetoelectric coupling are given in Table 4. If the thickness of
the plate is fixed, the definition of 2 keeps unchanged. Then, it is seen from Table 4 that, with the
increase of the in-plane size a, the lowest frequency of the first class and the lowest two ones of the
second class decrease rapidly. However, the other high order frequencies are not so sensitive to the
in-plane size as the three lowest frequencies mentioned above.

6. Concluding remarks

Two separated state equations derived from the three-dimensional transversely isotropic
magneto-electro-elasticity are employed to study the free vibration of a simply supported
magneto-electro-elastic plate that is inhomogeneous along the thickness direction. For the sake of
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Table 4
Natural frequencies Q of a square functionally graded plate (open-circuit) for different thickness-to-span ratios (k =
0.5)

H/a Class Frequency order
1 2 3 4 5
0.3 1 1.41503 3.47095 6.49336 9.61131 12.7547
2 0.768807 2.47386 4.27749 6.03656 7.91301
0.2 1 0.943521 3.30556 6.40687 9.55316 12.7110
2 0.383198 1.67340 3.82879 6.12678 7.50010
0.1 1 0.471810 3.20227 6.35442 9.51811 12.6846
2 0.104730 0.843201 3.50988 6.27603 7.16449
0.05 1 0.235911 3.17593 6.34124 9.50932 12.6781
2 0.0268721 0.422374 3.42161 6.34323 7.05138
0.02 1 0.0943653 3.16851 6.33754 9.50686 12.6762
2 0.0043324 0.169035 3.39613 6.36691 7.01489

convenience, the approximate laminate model is adopted in the analysis, which allows us to deal
with an arbitrary material inhomogeneity.

Two independent classes of vibrations are then found. The first class is purely in-plane that is
characterized by the vanishing of transverse displacement, electric potential and magnetic
potential; the corresponding bulk strain also equals zero. The second class of vibration is generally
flexural, having both in-plane and out-of-plane displacements as well as non-zero electric and
magnetic potentials. Furthermore, the frequency of the first class is independent of the magnetic
and electric parameters of the plate, thus giving a strict verification of the observation reported by
Pan and Heyliger [12]. It is also emphasized here that the electric displacements and magnetic
inductions do not vanish in the plate even for the first class of vibration because of the
piezoelectric and piezomagnetic couplings, as shown in Egs. (2) and (3), respectively. Note that by
setting g; = 0 and/or ¢; = 0, the formulations presented in this paper can be directly employed to
analyze the free vibration of magnetoelastic, piezoelastic as well as purely elastic plates.

Numerical investigation shows that the method converges rapidly and is very accurate. In fact,
the solution presented in the paper based on the approximate laminate model will gradually
approach the exact solution of the original inhomogeneous plate when the number of layers
increases. Thus, it can serve as a three-dimensional benchmark solution to check various two-
dimensional approximate theories and numerical methods. It is known that there is magneto-
electric coupling between the two individual phases in the BaTiO3;—CoFe,O4 composite [3]. Our
numerical result shows that this kind of coupling almost has no effect on the lower order natural
frequencies of the plate under consideration.

It should be noted that for a homogeneous or laminated plate, the solution obtained in this
paper becomes completely exact as shown by Wang et al. [7] for the bending problem.
Furthermore, it is pointed out here that exact solution can also be obtained when the material
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inhomogeneity obeys the following special rule:
my () = mj exp(;0), (27)

where m;; can be an arbitrary material constant including the density, m?/. and y are known
constants. We should assume the following form of solution instead of Egs. (16) and (17):

v 2 & HY
o = Z Z HC44f1(2) cos(mmnf) cos(nnn) exp(iwt), (28)
m=0 n=0
G ) H>G() /T
- C446-(0)

D. V/€aae33D=(0)

w o B.
B\ _ Vit <) sin(mré) sin(nmn) explio?). (29)
T e Hegah(0)
w Hw({)

¢ H\/caa/e339(0)
v ) H\/caa/1u339(0)

Then we can find that state equations with constant coefficients can be derived, and exact
solutions become obtainable.
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